The Kernel Path in Kernelized LASSO
نویسندگان
چکیده
Kernel methods implicitly map data points from the input space to some feature space where even relatively simple algorithms such as linear methods can deliver very impressive performance. Of crucial importance though is the choice of the kernel function, which determines the mapping between the input space and the feature space. The past few years have seen many efforts in learning either the kernel function or the kernel matrix. In this paper, we study the problem of learning the kernel hyperparameter in the context of the kernelized LASSO regression model. Specifically, we propose a solution path algorithm with respect to the hyperparameter of the kernel function. As the kernel hyperparameter changes its value, the solution path can be traced exactly without having to train the model multiple times. As a result, the optimal solution can be identified efficiently. Some simulation results will be presented to demonstrate the effectiveness of our proposed kernel path algorithm.
منابع مشابه
Sparse kernel learning with LASSO and Bayesian inference algorithm
Kernelized LASSO (Least Absolute Selection and Shrinkage Operator) has been investigated in two separate recent papers [Gao, J., Antolovich, M., & Kwan, P. H. (2008). L1 LASSO and its Bayesian inference. In W. Wobcke, & M. Zhang (Eds.), Lecture notes in computer science: Vol. 5360 (pp. 318-324); Wang, G., Yeung, D. Y., & Lochovsky, F. (2007). The kernel path in kernelized LASSO. In Internationa...
متن کاملHigh-Dimensional Feature Selection by Feature-Wise Kernelized Lasso
The goal of supervised feature selection is to find a subset of input features that are responsible for predicting output values. The least absolute shrinkage and selection operator (Lasso) allows computationally efficient feature selection based on linear dependency between input features and output values. In this letter, we consider a feature-wise kernelized Lasso for capturing nonlinear inp...
متن کاملA Scalable Algorithm for Structured Kernel Feature Selection
Kernel methods are powerful tools for nonlinear feature representation. Incorporated with structured LASSO, the kernelized structured LASSO is an effective feature selection approach that can preserve the nonlinear input-output relationships as well as the structured sparseness. But as the data dimension increases, the method can quickly become computationally prohibitive. In this paper we prop...
متن کاملHigh-Dimensional Feature Selection by Feature-Wise Non-Linear Lasso
The goal of supervised feature selection is to find a subset of input features that are responsible for predicting output values. The least absolute shrinkage and selection operator (Lasso) allows computationally efficient feature selection based on linear dependency between input features and output values. In this paper, we consider a feature-wise kernelized Lasso for capturing non-linear inp...
متن کاملAn Equivalence between the Lasso and Support Vector Machines
We investigate the relation of two fundamental tools in machine learning, that is the support vector machine (SVM) for classification, and the Lasso technique used in regression. We show that the resulting optimization problems are equivalent, in the following sense: Given any instance of an l2-loss softmargin (or hard-margin) SVM, we construct a Lasso instance having the same optimal solutions...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007